Carbon nanotubes-semiconductor networks for organic electronics: The pickup stick transistor
نویسندگان
چکیده
We demonstrate an alternative path for achieving high transconductance organic transistors in spite of relatively large source to drain distances. The improvement of the electronic characteristic of such a scheme is equivalent to a 60-fold increase in mobility of the underlying organic semiconductor. The method is based on percolating networks, which we create from a dispersion of individual single-wall carbon nanotubes and narrow ropes within an organic semiconducting host. The majority of current paths between source and drain follow the metallic nanotubes but require a short, switchable semiconducting link to complete the circuit. With these nanotube-semiconducting composites we achieve effectively a 603 reduction in source to drain distance, which is equivalent to a 60-fold increase of the “effective” mobility of the starting semiconducting material with a minor decrease of the on/off current ratio. These field-induced percolating networks allow for the fabrication of high-transconductance transistors having relatively large source to drain distances that can be manufactured inexpensively by commercially available printing techniques. © 2005 American Institute of Physics. fDOI: 10.1063/1.1906316g
منابع مشابه
A Review of Carbon Nanotube Ensembles as Flexible Electronics and Advanced Packaging Materials
The exceptional electronic, thermal, mechanical, and optical characteristics of carbon nanotubes offer significant improvement in diverse applications such as flexible electronics, energy conversion, and thermal management. We present an overview of recent research on the fabrication, characterization and modeling of carbon nanotube (CNT) networks or ensembles for three emerging applications: t...
متن کاملOrganic nanodielectrics for low voltage carbon nanotube thin film transistors and complementary logic gates.
We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithicall...
متن کاملHigh Mobility, Air-Stable Organic Transistors from Hexabenzocoronene/Carbon Nanotube Bilayers†
The pick-up-stick transistor concept is demonstrated using materials that are both air-stable and fully solution processable. In this paper, the thin film transistor (TFT) semiconductor is a bilayer structure with an array of carbon nanotubes (CNTs) as an underlayer and an alkyl-substituted hexabenzocoronene (HBC) overcoat. Electrical current flowing through the structure favors the low resista...
متن کاملSingle-walled carbon nanotube networks for flexible and printed electronics
Networks of single-walled carbon nanotubes (SWNTs) can be processed from solution and have excellent mechanical properties. They are highly flexible and stretchable. Depending on the type of nanotubes (semiconducting or metallic) they can be used as replacements for metal or transparent conductive oxide electrodes or as semiconducting layers for field-effect transistors (FETs) with high carrier...
متن کاملPentacene-carbon nanotubes: Semiconducting assemblies for thin-film transistor applications
We demonstrate an alternative path for achieving high-transconductance organic transistors by assembling bilayers of pentacene onto random arrays of single-walled carbon nanotubes. We show here that, by varying the connectivity of the underlying nanotube network, the channel length of a thin-film transistor can be reduced by nearly two orders of magnitude—thus, enabling the increase of the devi...
متن کامل